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Buoyancy-driven flow on a heated inclined plate can become unstable to static 
longitudinal roll instability a t  a critical distance, measured by Re, from the leading 
edge. Experiments in water by Sparrow & Husar (1969) indicate that these rolls 
undergo a second transition further downstream such that adjacent rolls merge and 
their spanwise wavelength is doubled. We study this secondary bifurcation 
phenomenon here with a set of model equations by first constructing the full 
eigenspectrum and eigenfunctions with a Chebyshev-Tau spectral method and then 
deriving the pertinent amplitude equations. By stipulating that the dimensional 
cross-stream wavelength of the rolls remains constant beyond Be, which is consistent 
with experimental observation, we show that the finite-amplitude primary rolls are 
destabilized by the i subharmonic mode at  another critical distance 8; from the edge. 
This i mode is shown to have an asymmetric spatial phase shift of $IT relative to the 
original 1 mode of the primary rolls, thus explaining the unique dislocation of tracer 
streaks after the rolls coalesce in the experiments. Also consistent with experimental 
observation is the theoretical result that the merged rolls are annihilated downstream 
by a saddle-node bifurcation before further wavelength doubling can occur. Simple 
amplitude criteria and critical distances from the leading edge for the various 
transitions are derived and compared to experimental values. 

1. Introduction 
We are concerned with the nonlinear development of longitudinal vortex rolls in 

natural convection boundary layers on heated inclined plates as shown schematically 
in figure 1.  These rolls occur as a result of a non-zero buoyancy force in the direction 
normal to the plate. Consequently, vertical or near-vertical plates are stable to this 
roll instability. The near-vertical plates, however, can be unstable to Tollmien- 
Schlichting-type wave instability (Lloyd & Sparrow 1970). The appearance of 
longitudinal vortices on inclined plates in many new industrial processes such as 
chemical vapour deposition has recently revived interest in this classical problem 
(Jensen 1987). However, except for numerical simulations of buoyancy-driven 
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z 
FIQURE 1. Schematic of roll pairing in free-convection boundary layers. The longitudinal vortices 
develop at R, and coalesce at R;. Note the dislocation of the merged rolls relative to the primary 
ones. 

vortices in complex geometries (Yang 1988), nonlinear evolution of these vortices 
after their inception has not been studied for the simple inclined plate geometry. 
Sparrow & Husar (1969) first observed in water a now well-known wavelength- 
doubling phenomenon of these longitudinal rolls a t  a critical distance from their 
inception. Gilpin, Imura & Cheng (1978) have also observed the same phenomenon 
in water for a heated Blasius boundary layer. As shown in figure 1, adjacent rolls 
merge abruptly after this transition and double their cross-stream wavelength. The 
merged rolls are also shifted from the primary rolls so that a unique dislocation of the 
tracer streaks, which occupy the sides of the rolls where the flow is in the normal 
direction away from the plate, are seen in Sparrow & Husar’s experiments. This is 
shown schematically in figure 1. Further downstream, the tracer experiments of 
Sparrow & Husar indicate that the merged rolls are dissipated by turbulence without 
further wavelength doubling. The merging of adjacent rolls and the doubling of 
wavelength occur abruptly and discontinuously. Prior to and after the transition, the 
wavelengths remain extremely regular over relatively long distances. Hence, a 
wavelength adjustment mechanism arising from growth of the boundary-layer 
thickness such as occurs for Tollmien-Schlichting waves is not responsible for the 
coalescence. Such a mechanism would stipulate a slow and continuous increase of the 
cross-stream wavelength without merging or dislocation. A probable cause for the 
pairing phenomenon is the sudden destabilization of the finite-amplitude rolls by 
subharmonic disturbances. New rolls with twice the wavelength then bifurcate a t  the 
transition point, thereby allowing the convection rolls to  have an aspect ratio more 
suitable to  a larger boundary-layer thickness. We shall develop a secondary 
bifurcation theory here to  explain the pairing phenomenon and the subsequent 
dissipation of the merged rolls. 

When a system is unbounded in a particular direction, the corresponding 
spectrum, parameterized by the wavenumber in the unbounded direction, is 
continuous and an entire band of unstable wavenumbers exists beyond criticality. In  
many systems, such as the present one, the possible wavenumbers selected out of this 
band are only a subset of the entire band. The other wavenumbers are unstable to 
disturbances with slightly different wavenumbers and are hence not selected. This 
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sideband instability was first studied by Eckhaus (1963) who showed that 
monochromatic rolls in a non-dispersive system with wavenumbers a within the 
range 

where a, is the critical wavenumber and a+ are the two neutral wavenumbers which 
bound all linearly unstable modes, are stable to sideband disturbances near 
criticality. We have recently extended the Eckhaus bound to dispersive systems and 
away from criticality (Cheng & Chang 1990). However, as we shall show 
subsequently, the present roll instability is non-dispersive and the finite-amplitude 
primary roll is stable to sideband disturbances according to the Eckhaus bound. This 
is consistent with the patterns observed by Sparrow & Husar which show very little 
sideband modulation. Another instability can also occur for convective rolls in shear 
flows as the Rayleigh or Reynolds number increases beyond the critical value for 
onset of rolls. Clever, Busse & Kelly (1977) have shown that, for a Couette flow 
heated from below, the convective rolls can be destabilized by a streamwise wavy 
instability which occurs slightly above criticality. However, since this wavy 
instability occurs first for infinite-wavelength disturbances, it is less likely to occur 
in non-parallel boundary-layer flows. There are indications that this wavy instability 
resembles one type of instability of Gortler vortices (see figure 14(c) of Swearingen 
6 Blackwelder 1987) and so might occur for convective instabilities in low-Prandtl- 
number fluid boundary-layer flows. Beside the sideband and wavy instabilities, 
subharmonic instability also seems to be prevalent for finite-amplitude mono- 
chromatic waves. There have been some recent studies of subharmonic excitation in 
many different systems such as sheared gravity-capillary waves (Janssen 1986) and 
horizontal fluid layers heated from below (Busse & Or 1986). Vortex pairing in a free 
shear layer is, however, the most studied example of a system whose critical 
monochromatic wave is unstable to a subharmonic instability such that adjacent 
vortices coalesce in a wavelength-doubling transition after the critical mode has 
grown to a critical and finite amplitude. This phenomenon was first observed by Sat0 
(1959), and Kelly (1967) derived the pertinent amplitude equations to show that the 
subharmonic mode is excited through nonlinear interaction. He also predicted the 
excitation of the $ mode which was later observed. Monkewitz (1988) has recently 
extended the amplitude equations to account for spatial growth of the disturbances 
and frequency mismatch. There is hence considerable interest in constructing a 
general subharmonic instability theory, as in the sideband stability theory, to 
understand the nonlinear wavenumber selection process in an unbounded system. In 
an inviscid shear layer without gravity stratification, however, the Kelvin- 
Helmholtz instability dictates that all streamwise wavenumbers between zero and 
the maximum-growing one are linearly unstable. Consequently, all subharmonics are 
unstable and higher subharmonics will eventually be excited even though the current 
theories only consider the first subharmonic. Thomas (1990) has observed some of 
these higher subharmonics in his experiments with planar jets and one generally 
expects a sequence of coalescence. In  the present natural convection problem in a 
boundary layer, the band of unstable cross-stream wavenumbers is bounded away 
from zero. Consequently, the higher subharmonics are linearly stable except at 
distances very far from the leading edge. We shall demonstrate in our analysis that 
the merged rolls have already dissipated via a unique saddle-node bifurcation a t  such 
distances. As a result, excitation of the stable subharmonics is far more difficult in 
the present problem and higher subharmonic modes have never been observed. Also, 
for an inviscid shear layer, the coalesced vortices grow unarrested in space and time: 
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In the present problem, through interaction with the stable subharmonic modes, 
finite-amplitude saturated rolls are predicted and observed both prior to and after 
wavelength doubling. There are hence fundamental differences in the excitation 
mechanism of the subharmonics in these two systems. 

There is a large body of literature on the linear stability of the flow under 
consideration (see the most recent review by Gebhart et al. 1988). After Yang (1960) 
derived the similarity solution to the steady-state vertical-plate problem, Haaland 
& Sparrow (1973) examined the growth of longitudinal roll disturbances on inclined 
plates with a parallel-flow theory. In their similarity analysis of the main flow, the 
pressure gradient term in the streamwise direction is neglected and the only driving 
force for flow parallel to the plate is the corresponding component of the buoyancy 
force. This approximation, which is valid for inclination angles no more than 45" 
from the vertical, allows them to carry out a similarity analysis for the main flow of 
the inclined plate which is identical to Yang's solution of the vertical case. By 
assuming static instability (viz. the principle of exchange of stability), they showed 
that the basic flow for these plates destabilizes at  R = 23.5/tan8 for a Prandtl 
number Pr of 6.7, where R is the local Reynolds number measured from the edge 
defined in (2.1Oa) and 8 is the inclination angle from vertical. Their computation was 
later improved by Chen & Tzuoo (1982) who also examined the case of horizontal and 
inclined plates. The assumption of exchange of stability, which is based on purely 
physical arguments since the eigenvalue problem is not self-adjoint, is also imposed 
in Chen & TZUOO'S computations. Quantitative agreement between theory and 
experiment for the onset of roll instability is still unsatisfactory, with the observed 
transition from the basic flow to the primary rolls occurring downstream of the 
predicted station. Attempts to remedy this discrepancy by considering the 
amplification of small disturbances have been proposed (Iyer & Kelly 1974). 
Probably experiments using controlled disturbances (as done regularly for Tollmien- 
Schlichting instability) will have to be performed before theoretical and 
experimental results can be compared definitively. Moreover, for very small 0, the 
TollmienSchlichting travelling wave instability with streamwise variation but no 
spanwise dependence seems to be more unstable than the roll instability (Lloyd & 
Sparrow 1970). This has also been theoretically confirmed by Hwang & Cheng (1973), 
Haaland & Sparrow (1973), Kahawita & Meroney (1974), Iyer & Kelly (1974) and 
TZUOO, Chen & Armaly (1985) for various Prandtl numbers Pr and inclination angles 
8. Kahawita & Meroney predicted that a t  Pr = 0.72, the wave instability becomes 
dominant for 8 < 17" and Iyer & Kelly found that for water (Pr = 6.7), the cross- 
over angle based on a parallel flow model is 8 = 4'. Tzuoo's et al.'s computations 
which allow for some non-parallel effects show larger cross-over angles. Experimental 
values of Lloyd & Sparrow (1970) for water are between 14' and 17". There is also 
a large body of literature on periodically forced two-dimensional Tollmien- 
Schlichting waves (see the review by Gebhart & Mahajan 1982) which is not pertinent 
to the roll instability problem studied here. 

We shall here focus on nonlinear subharmonic instability of the longitudinal rolls 
and the evolution of the merged rolls. Interaction between the roll and wave 
instabilities will be reported in a later manuscript. In  general, interaction between 
these two modes is most pronounced near the cross-over 8 when the critical Reynolds 
number R, for both instabilities become identical (see studies on interactions 
between Gortler vortices and TollmienSchlichting waves in curved channels by 
Daudpota, Hall & Zang (1988), between temperature-driven and solute-driven 
instabilities in the doubly-diffusive Marangoni problem by Ho & Chang (1988) and 
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between even and odd convective patterns in Taylor-BBnard instability in a Hele- 
Shaw cell by Hwang & Chang (1989)). Also, computations by Tzuoo et al. (1985) and 
experimental observations (Sparrow & Husar 1969) show that the dimensional 
streamwise wavelength of the wave instability is much longer than the spanwise 
wavelength of the roll instability. Consequently, if the growth rate of the wave 
instability is small, the roll instability will most likely evolve independently from the 
wave instability even for near-vertical plates where the wave instability destabilizes 
first. This allows a simplifying modified parallel-flow approximation to be made, as 
will be discussed later. It should also be mentioned that Benney (1960) and Benney 
& Lin (1960) have shown that two-dimensional finite-amplitude travelling waves in 
shear flows can be unstable to three-dimensional disturbances such that longitudinal 
rolls are created. It is unlikely that the observed vortices in the present problem are 
formed from finite-amplitude Tollmien-Schlichting travelling waves since the basic 
flow itself is more susceptible to roll instability than the wave instability except at  
very small 0. 

The major obstacle to the nonlinear analysis is the resolution of the eigenfunctions 
in the normal semi-infinite direction. To obtain the amplitude equations, not only the 
critical eigenmode but also several of its subharmonics and superharmonics need to 
be constructed since finite-amplitude rolls and their stability are caused by nonlinear 
interaction among these modes. The conventional shooting method which constructs 
the critical mode at  onset would be inadequate for this task. We use a Tau-spectral 
method here for the eigenvalue problem in semi-infinite domains and demonstrate its 
accuracy with a convergence study. 

In $2, we derive the nonlinear governing transport equations for roll instability by 
imposing the modified parallel-flow approximation. The resulting equations are 
essentially nonlinear extensions of Haaland & Sparrow's linear theory for plates with 
8 less than 45'. In $3, we solve the full eigenspectrum of the linear stability problem 
without assuming the principle of exchange stability as previous workers. Although 
complex eigenvalues were found, the most unstable one is always real. We stipulate 
that the rolls retain the dimensional spanwise wavelength of the fastest-growing 
linear mode, which is consistent with experimental data. In  $4, we derive the 
amplitude equations describing the quadratic interaction between the fundamental, 
subharmonic and superharmonic spanwise modes of these rolls. The amplitude 
equations are solved numerically for increasing values of R. It is shown that the 
fundamental mode interacts with its overtone to form a finite-amplitude standing 
roll which bifurcates supercritically at the critical Reynolds number R,. When the 
amplitude of this primary roll exceeds a critical value, it becomes unstable to the 
linearly unstable t mode of the main flow such that the bifurcating rolls downstream 
have twice the wavelength of the primary rolls. The precise shift dislocation is also 
obtained from our theory. After the rolls coalesce, they disappear chaotically further 
downstream via a saddle-node bifurcation and no further wavelength doubling 
occurs. Even this prediction is in qualitative agreement with the experiments of 
Sparrow & Husar (1969). In $5, we augment the numerical solution with a 
bifurcation analysis to obtain analytical estimates of the transitions and their onset 
conditions. The analysis also reveals that the shift between the merged and 
unmerged rolls is caused by a particular nonlinear coefficient in the amplitude 
equations. The results are summarized in $6. 
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2. Formulation 

energy equation are (Gebhart et al. 1988; Haaland & Sparrow 1973) 
By imposing the Boussinesq approximation, the equations of motion and the 

aV/al"+ V - V V =  -1/pVp-pg(T-T,)+vV2V, ( 2 . 1 ~ )  
aT/al"+ V.VT = aV2T, (2.lb) 

v.  v =  0, (2.lc) 

where T, is the ambient temperature, /3 the expansion coefficient, v the kinematic 
viscosity and a the thermal diffusivity. We shall simplify these equations by using 
the boundary-layer approximation for the basic flow and a model set of equations for 
the disturbance in which the dependence of the perturbations on the streamwise 
x-coordinate is ignored. The linearized version of this model has been proposed to  
extend the conventional parallel-flow stability theory so as to include the normal 
component of the disturbance velocity entirely (Haaland & Sparrow 1973). For 
homogeneous shear flows, use of this model gives rise to the 'modified' Orr- 
Sommerfeld equation, and some refer to its use as a modified parallel-flow 
assumption. Like strict parallel-flow theories, it allows the construction of a local 
OrrSommerfeld equation for each point along the boundary layer, and the Reynolds 
number, which is actually a measure of the distance from the edge, then becomes a 
convenient control parameter in the equation. Haaland & Sparrow (1973), Kahawita 
& Meroney (1974) and Chen & Tzuoo (1982) have all used such an approximation to 
study the linear stability of the present flow in regard to the thermally driven 
instability. For this particular flow, its use allows the fact that the velocity 
component normal to the plate is inwards at the edge of the boundary layer to  be 
taken into account, which is vital to the analysis of long-wavelength disturbances. 
Gebhart & Mahajan (1982) and Tzuoo et al. (1985) also employed the same 
approximations to study streamwise TollmienSchlichting waves in the same flow. 
The analogous parallel-flow linear theories for spanwise Gortler instability have been 
scrutinized by Hall (1983). For spanwise vortex wavelengths equal to or larger than 
the boundary-layer thickness, he shows that the parallel-flow theory does not yield 
the proper limiting behaviour of the vortex disturbances a t  the upper edge of the 
boundary layer. Not surprisingly, when he numerically integrates the complete 
linearized equations of motion, he finds that the onset position of very long vortex 
disturbances is dependent on the form of the initial disturbance and can be far from 
the unique prediction of the parallel-flow theory. However, the numerical result in 
his figure 7 also shows that a t  ax; - 2, where 01 is the dimensionless spanwise 
wavenumber and x is the dimensionless streamwise coordinate that the point when 
the spatial growth rate vanishes and both are scaled with respect to the boundary- 
layer thickness. His numerical results for the onset location for various disturbances 
are within 20% of the parallel-flow prediction, and the growth rates all approach the 
parallel-flow result a t  even larger values of a&. Since x is typically large ( -  50), this 
shows that the parallel-flow theory remains a reasonably good approximation, as far 
as the prediction of onset is concerned, even when the spanwise wavelength is the 
same order as the boundary-layer thickness. It is when the vortex wavelength is 
much longer than the boundary-layer thickness that the parallel-flow theories fail. 
Agreement with experimental measurements is, however, another matter and, 
generally speaking, Hall's numerical results for onset are well below the experimental 
data. All buoyancy-induced rolls in the experiments of Sparrow & Husar (1969) and 
Gilpin et al. (1978) have dimensions within the range where the parallel-flow theory 
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is reasonably valid. Moreover, unlike Gortler instability, the streamwise velocity 
vanishes rapidly away from the wall in a free convection boundary layer. This 
diminishes the effect of streamwise convection and renders parallel-flow theory more 
appropriate. We shall show that, in the present problem, the parallel-flow 
approximation provides a prediction of the critical wavenumber that is accurate to 
within 25 YO. As in the Gortler instability studied by Hall (1983),  the prediction of the 
critical distance from the edge is less accurate with errors sometimes exceeding 100 YO 
(as is also true for the results of Haaland & Sparrow 1973 and Chen & Tzuoo 1982). 
The quantitative success (less than 30 % error) of the parallel-flow approximation in 
analysing the stability of the Blasius boundary layer is hence not duplicated here. 
Nevertheless, the linear stability results of Chen & Tzuoo (1982) indicate that the 
qualitative effects of the various parameters on the stability of the problem are still 
faithfully reproduced. We will retain the modified parallel-flow approximation here 
in order to simplify the analysis. A direct attack on (2.1) is still not feasible 
numerically. However, we shall present quantitative comparisons of our results to 
the experimental values as often as possible in order to test the accuracy of the model 
equations. 

For the steady-state problem, if the usual boundary-layer approximations are 
introduced and if the pressure gradient in the x-direction is neglected, a similarity 
transform can be carried out to reduce the order of equation (2 .1)  (see Haaland & 
Sparrow 1973). The analysis yields 

F”’+ 3FF-2F’’  + 4 = 0, ( 2 . 2 ~ )  

q5”+ 3Pr F4’ = 0,  (2 .2b)  
with boundary conditions 

F(0)  = F’(0) = F’(oo) = #(a) = 0, (2 .2c)  

0) = 1,  ( 2 . 2 d )  

for the isothermal plate problem. In (2 .2) ,  the derivatives (denoted by a prime) are 
with respect to the similarity variable 7 = y/h(x) where 

h(x)  = Xi/K, ( 2 . 3 ~ )  

(2 .3b)  K = [pg cos 8(T, - Tm)/4U2]i, 

F ( 7 )  is related to the steady-state stream function $*, 
F ( p )  = $*/4UKX$ ( 2 . 3 ~ )  

and q5(7) is the dimensionless steady-state temperature 

4(7 )  = (T* - Tm)/(Tw - Tcl), ( 2 . 3 d )  

where T* is the dimensional steady-state temperature and T, is the plate temperature 
which is assumed to be a constant. The coordinates x and y respectively denote 
streamwise distance from the edge of the plate and normal distance from the plate. 
The two-dimensional basic flow is obtained by solving (2.2) with a standard shooting 
method which iterates # ( O )  and F’(0) until the two conditions at 7 = oo in (2 .2)  are 
satisfied. The iterations are stopped when the Newton-Raphson method has 
converged to the fifth decimal place. The resulting values can then be used to 
compute the basic temperature profile T*(x, y) and the basic flow 

a** , V * ( q  y) = --. a** U*(x,y) = - a Y  ax 
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Introducing the deviation variables 

v =  V*+u(y ,z , i )=  (!)+(%)! ( 2 . 5 ~ )  

T = T* + ~ ( y ,  Z, i?), 

II. = II.* + $(Y, 29 ti, 
(2.5b) 

( 2 . 5 ~ )  

neglecting the x-dependence of the deviation variables in accordance with the 
modified parallel-flow approximation and further assuming that the disturbance 
grows temporally instead of spatially in the downstream direction, one obtains from 
(2.1) after taking the curl of the equation of motion 

sin 8 - + vV2w, ( 2 . 6 ~ )  
aw aw av* @aw @aw -+ V*-+w------+-- = -gp 
at ay ay aZ ay ay aZ a Z  

( 2 . 6 ~ )  

where o is the vorticity component in the x-direction for the two-dimensional 
disturbance flow field 

and 

aw av 
ay a2 

w(y, z )  = --- = V"(y, z ) ,  ( 2 . 7 ~ )  

(2.7 b )  

and the Laplacian operator V2 in (2.6) and ( 2 . 7 ~ )  is a two-dimensional one with 
respect to y and z. 

The neglect of the x-dependence in the modified parallel-flow approximation of 
(2.5) and the retention of nonlinear terms involving the deviation variables require 
some justification concerning the magnitudes of the streamwise lengthscale and the 
disturbance field. We shall sketch a leading-order multi-scale derivation of (2.6) here. 
We first allow x-dependence in the deviation variables of (2.5) but stipulate that the 
dependence is weak such that the deviation variables are functions of the scaled 
x-coordinates x, = el x. This weak dependence of both the disturbance and the main 
flow on x is evident from literature reports. The boundary-layer thickness near the 
first onset of rolls is of the order of 0.5 cm while the transition of interest here 
typically occurs about 5 cm from the edge. Even in the case of the vertical plate with 
strong streamwise TollmienSchlichting instability, the disturbance usually evolves 
in the x-direction with a characteristic lengthscale of 5 c m  (Szewczyk 1962). In  
comparison, the cross-stream wavelength is about 0.5 cm. These characteristic scales 
yield an el of lower than 0.1, which renders the parallel-flow approximation a 
reasonable one. We also stipulate that the disturbance variables have an amplitude 
of O(e2). Upon substituting such deviation variables into (2.1) and omitting terms of 
orders O(ele2), O ( E ~ )  and higher, (2.6) is obtained. Since we are retaining the O(ei) 
nonlinear terms, this then stipulates that el 4 e2. For example, an order assignment 
of e2 - O ( q )  would be appropriate. This then allows us to add the nonlinear terms to 
the linearized modified parallel-flow equations of the earlier studies. The neglected 
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higher-order terms in el in the modified parallel-flow approximation are all linear 
while the nonlinear terms are retained in (2 .6) .  Consequently, the nonlinear 
interaction phenomenon should be modelled reasonably well, although the prediction 
of the transition points may be compromised. Indeed, in his analysis of the onset of 
Rayleigh-B6nard convection in a fluid layer of slowly increasing depth, Walton 
(1982) demonstrated that a sharp bifurcation does not occur near the ‘critical’ 
condition. However, for Rayleigh numbers in excess of the usual critical value, the 
amplitude of the convection cells approaches asymptotically the result for a 
constant-depth layer, namely with amplitude proportional to [Ru(x) -Ra,$, where 
Ra is the Rayleigh number. Because we are mainly interested in supercritical 
phenomena, we take the view that a parametric dependence upon x via R ( x )  is the 
item of central importance and so do not develop equations valid only in the 
immediate vicinity of R,. 

Equation (2 .6)  can be further simplified by scaling the deviation temperature with 
T, - T,, the time with h 2 ( x ) / v  and the deviation velocities with the characteristic 
velocity ~ ( x )  = 4 ~ ~ x 3  to yield 

w =f,+fm 
V* = 7 F - 3 F ,  

( 2 . 8 ~ )  

(2 .8b)  

( 2 . 8 ~ )  

( 2 . 8 d )  

(2 .8e)  

where the convective nonlinear terms are contained in the square brackets and prime 
denotes derivative with respect to 7. The variable 6 is the scaled cross-stream 
coordinate 

S = z / h ( x )  

and t is the scaled time coordinate 

t = vi?/h*(x). 

( 2 . 9 ~ )  

(2 .9b)  

The dimensionless parameter R is the local Reynolds number, representing the 
normalized distance from the edge 

R = a ( x )  h(z) /v  = ~ K X ;  ( 2 . 1 0 ~ )  

f = $ / ( a ( x ) h ( x ) ) .  (2 .10b)  

Equation (2 .8)  is subjected to the non-slip and isothermal boundary conditions at the 
wall and vanishing velocity and thermal disturbances far from the wall 

and f (y,S, t )  is the scaled deviation stream function 

u = T = f = f,, = 0 at 7 = Oand co. (2 .11)  

The linear part of (2 .8)  can be further simplified if the following transformation 
introduced by Haaland & Sparrow is imposed to scale away explicit &dependence in 
the linear terms: 

? = ‘tan$, 6 = utan8, a = RtanB (2.12) 
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(2.136) 

= f v q  +f8& ( 2 . 1 3 d )  

with boundary conditions 

(2.14) u = r = f = f , = O  at  r = O a n d c o .  

We note that transformation (2 .12)  becomes singular for the vertical case B = 0". In  
fact, longitudinal vortices do not form on vertical plates because of the lack of 
normal buoyancy force. If the nonlinear and time-dependent terms of ( 2 . 8 )  are 
omitted, it reduces to the static disturbance equations of Haaland & Sparrow (1973).  

* *  

3. Eigenspectrum 

normal mode expansion is permissible for the spanwise direction, 
Since S and t do not appear explicitly in the linear portion of (2 .13) ,  a standard 

where 01 is the dimensionless wavenumber in the spanwise direction. Substitution of 
(3 .1)  into (2.13) then yields the eigenvalue problem 

i(i) = A t ) ,  (3 .2)  

where i is a differential-integral operator parameterized by the spanwise wave- 
number a, the Prandtl number Pr and the normalized Reynolds number fi (note 
that 8 has been scaled away in the linear problem), 

(3 .3)  

The operator D denotes viscous (conduction) and convective terms for momentum 
(energy) balance in the normal and spanwise directions 

d2 d d 
D = - -a2-V*(r] ) -  L-V*(q)- 

dr2 dr d r  
(3 .4)  
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and L-' denotes the inverse of the viscous operator 

(3.5) 

subjected to appropriate boundary conditions in (2.14). The integral operator L-' 
can be formally represented by 

where Laplace transform and boundary conditions off at 7 = 0 in (2.14) have been 
invoked. However, we shall invert L numerically by our spectral expansion. 

It is easy to show that the eigenvalue problem (3.2) consists of two decoupled 
systems corresponding to the real and imaginary part of the complex eigenfunction 
(&d, ;). In fact, the decoupled systems are related by the transformation 

(3.7) 

This explains why, for real eigenvalues, Haaland & Sparrow are able to consider only 
the modes 

'1 C = zicosa6, 2 = dsina8, 

= icosaa, f"=fsinaa. j 
( 3 . 8 ~ )  

There exists a conjugate eigenfunction set which is exactly +7c out of phase with 
( 3 . 1 0 ~ )  in the spanwise direction but yields the same real eigenvalue, 

'1 C = -zisinaS, 

+ = - .i sin ad, 

2 = dcosaa, 

f = fcos as. J 
(3.8b) 

It should be noted that, for complex eigenvalues, the two conjugate eigenfunctions 
are distinct and Haaland & Sparrow's expansion of ( 3 . 8 ~ )  is incomplete. We shall 
compute the entire spectrum here. 

We solve the semi-infinite-domain eigenvalue problem by a domain mapping 
technique coupled with a Chebyshev-Tau spectral expansion (Spalart 1984 ; Gottlieb 
& Orszag 1977 ; Ho & Chang 1988). We map the integral q E [0,  GO) into $ E (0,1] by 
the exponential map 

(3.9) 
Spalart (1984) has observed that an expansion in terms of odd Chebyshev 
polynomials in $ has the advantage of providing better resolution near the wall 
$ = 1 and coarser resolution away from the wall. We note that for the interval 
$E (0,1], both odd and even Chebyshev polynomials are complete but only the 
odd polynomials offer this preferential resolution near the wall. Moreover, 
odd polynomials satisfy all the requisite boundary conditions away from the wall at  
$ = 0. The boundary conditions at  f j  = 1 are not satisfied explicitly by the Chebyshev 
basis. To remedy this, we expand each variable in (3.2) with the appropriate number 
of extra expansion terms and use the unsatisfied boundary conditions to determine 
the extra degrees of freedom, 

n+1 nfz n f l  

ti = c. a&($), 4 = c biP,(fj), .i = c C i P , ( $ ) ,  (3.10 u+) 
6-1 I-1 (-1 
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where G($] are the odd Chebyshev polynomials of degree 2i - 1. The deviation stream 
function f is likewise expanded and is related to the deviation vorticity (3.10b) by 
(2.13d ). This is the Tau-spectral formulation for 'extra ' boundary conditions 
(Canuto et a2. 1988). We substitute (3.10) into (3.2) and take the inner product with 
only n bases to obtain a projected Jacobian 

J4 = ( 3 . 1 1 ~ )  

B4 = 0, (3.11 b) 

where J i s  a (3n) x (3n+4) rectangular matrix, 4 is a (3nf4) vector, 4 = (a, b,  c ) ~ ,  and 
B is a 4 x (3n + 4) rectangular matrix representing the four boundary conditions a t  the 
wall in (2.14). In  the evaluations of the inner products for J, an orthogonal collocation 
technique (Villadsen & Stewart 1967) is used in which the derivatives are 
approximated by the analytical derivatives of the polynomial expansions of (3.10) 
which can be expressed in convenient recursive formulae. For example, the odd 
Chebyshev expansion of a function 

(3.12) 

and its derivatives with respect to the untransformed coordinate 17 can. now be 
expressed in terms of the odd Chebhshev polynomials in the transformed coordinate 
$: 

n 

j-l+i 
then a: = -(2i-1)ai-2 C (2j-1)aj, 

(3.13) 

( 3 . 1 4 ~ )  

n 

+l+i 

= ( 2 i - 1 ) 2 ~ i + 4  c ( 2 j - 1 ) ( j - i ) ( j + i - l ) a j .  (3.14b) 

(We have derived these formulae from the tables of Fox & Parker (1968) and Orszag 
(1971).) The inner products are then evaluated such that the residuals vanish exactly 
at  the zeros of the odd Chebyshev polynomial Pn+&$) which are given by 

in-k = c o s ( ( k + $ ) ~ / ( 2 n + 5 ) } ,  k = 0,1 ,2 ,  ... n-1. (3.15) 

In this manner, explicit integrations are not necessary and only evaluations of the 
odd Chebyshev polynomials a t  the zeros of (3.15) are required. Another major 
advantage of our spectral formulation is the fact that B in (3.11 b) is independent of 
8, Pr and a and the rectangular matrix J, which is the projection of the operator i 
in (3.3), only contains a submatrix, corresponding to the projection of L-l, which has 
implicit dependence on a and must be evaluated for every a value. Other dependence 
on a, Pr and fi can be factored out explicitly, as is evident in (3.3), such that the 
submatrices need only be evaluated once. In contrast, a shooting method solution of 
the OrrSommerfeld equation in general requires duplicating the full numerical effort 
for each parameter value. 

The projected eigenvalues of (3.11) can be easily obtained by expressing the last 
four elements of 4 in terms of the first 3n elements through (3.11 b) and hence 
reducing (3.11a) to a (3n) x (3n) eigenvalue problem. A standard routine is used to 
evaluate the eigenvalues numerically. In  figure 2, we depict the relative error 



Spanwise pairing of Jinite-amplitude longitudinal vortex rolls 85 

lo-' - 
0 

n 

FIQURE 2. Convergence of the leading eigenvalue at Pr = 5.5, a = 20 and a = 0.8 with respect 
to the mode number n. 

FIQURE 3. The eigenspectrum of the linear problem at  Pr = 5.5, a = 24.26 and a = 1.292. 

~An+l-An~/~An+l~ of the computed leading real eigenvalues as a function of mode 
number n for a = 0.8, a = 20 and Pr = 5.5. As is evident, an exponential convergence 
with a moderate rate of decay ( N 0.23) is achieved, indicating that the spectral 
expansion is formulated correctly. In all subsequent computations, n = 50 is used 
and we estimate the error on the leading eigenvalue to occur at the fifth decimal 
place. A typical discrete normal seectrum for a given spanwise wavenumber is shown 
in figure 3 for a = ac = 1.292, R = 24.26 and Pr = 5.5. Although aome complex 
eigenvalues appear in the spectrum, the leading five eigenvalues are always real for 
realistic parameter values. Consequently, the 'exchange of stability ' assumption by 
Haaland & Sparrow is correct even though the eigenvalue problem is not self-adjoint. 
Also, since the critical mode has a real eigenvalue, Eckhaus' sideband stability bound 
(1.1) applies. It will be shown later that downstream finite-amplitude rolls which 
retain the dimensional wavelength a t  criticality are stable to sideband disturbances. 
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FIGURE 4. The neutral curves of the linear problem (a) Pr = 5.5 and (6) Pr = 6.7 

0 

-2 

FIGURE 5.  Linear growth rate of all normal and spanwise modes at onset for P r  = 5.5. 

Pr 8, a c  

5.5 24.26 1.292 
6.7 23.50 1.220 

TABLE 1.  Critical Reynolds number and wavenumbers for the main flow 

This is consistent with the tracer streak photographs of Sparrow & Husar (1969) and 
Gilpin et al. (1978) which show very regular rolls before and after coalescence without 
any modulation. This then allows us to restrict our attention only to certain discrete 
modes (the superharmonics of ;a) and neglect the sidebands, even though a 
continuous band of wavenumber is linearly unstable. In figure 4, the neutral curves 
for Pr = 5.5 and 6.7 are shown and compared to the results of Haaland & Sparrow 
for Pr = 6.7. The computed critical Reynolds number and wavenumber, R, and a,, 
are tabulated in table 1. I n  figure 5 ,  the full discrete normal spectrum for various 
cross-stream wavenumbers a is shown for Pr = 5.5 and E = Be. The absence of 
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2 
(4 

5 Str;eamline 

" In rr % 2rr 

11 a, 6 
FIQURE 6. (a) Computed eigenfunctions at 8, = 24.26 and a, = 1.292 for Pr = 5.5. 

( b )  Computed streamlines and isotherms for the critical condition of (a ) .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

a 

0.24468 

0.037 26 
0.008 4 1 

0.005 16 

0.00492 
0.003 64 

- 0.17603 

- 0.104 47 

-0.001 52 

- 0.004 94 

b 

0.921 88 
-0.70109 

-0.21442 
-0.070 77 

0.12558 

0.065 91 

0.02066 

-0.10150 

-0.03843 

-0.01035 

C 

0.95880 
1.00000 
0.48673 
0.66558 
0.61442 
0.60888 
0.61764 
0.59452 
0.601 70 
0.581 15 

TABLE 2. First ten spectral coefficients of the streamwise velocity, vorticity and temperature 
eigenvectors 

' cross-over ' indicates that the eigenvalue of the same normal spectral mode remains 
the most unstable one for all a values. In table 2, the first ten spectral coefficients of 
the cigenvectors a, b, and c of expansion (3.10) are tabulated for the leading normal 
mode at  = 8, = 24.26 and a = a, = 1.292 in figure 5. The declining mode 
contribution further verifies the convergence of our spectral expansion and that 
sufficient modes have been taken. The maximum in the temperature eigenfunction 
$ depicted with other critical eigenfunctions Zi and Cj in figure 6 (a )  is located slightly 
below the centre of this vortex. This longitudinal vortex roll is constructed in figure 
6 ( b )  from the critical velocity eigenfunction. 

One distinct result of formulating (2.13) in the similarity variables is that the only 
explicit dependence on x is contained in 8 which appears linearly in the equations. 
Consequently, the linear operator L of (3.3) can be conveniently decomposed into 

c = c, +l%(17-17c) c,, (3.16) 

where Lo = L(Rc). (3.16b) 

The operators Lo and e, can be easily obtained from (3.3). It is important to note that 
( 3 . 1 6 ~ )  is exact and not a local expansion near B,. The eigenvalues of c, however, do 

I - -  
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FIGURE 7. The linear growth rate of the most unstable normal mode for various Reynolds 
numbers. The growth rate varies linearly with respect to the Reynolds number. 

not vary linearly with respect to a except in the neighbourhood of 8,. Nevertheless, 
as seen in figure 7, our numerical result indicates that, for the conditions considered 
here, the maximum-growing wavenumber remains close to a,. However, the 
dimensionless wavenumber a is obtained by scaling the actual wavelength by the 
boundary-layer thickness in (2.9). Hence, a constant a at every downstream position 
would actually imply a cross-stream roll wavelength that varies downstream. This is 
inconsistent with Sparrow & Husar’s (1969) experimental observations. The actual 
wavelength selected downstream seems to remain at  the same value at  a,. We shall 
abide by this observed wavelength selection mechanism and stipulate that the 
wavenumber chosen downstream is not the maximum-growing one a, but 

(3.17) 

This path is depicted as a dashed curve in figure 8 within the neutral curve for 
Pr = 5.5. The other dashed curve in figure 8 represents the path of the fast-growing 
wavenumber at every downstream position. This fastest-growing wavenumber 
remains close to a,. We note that path (3.17) implies that the subharmonic mode $* 
is more unstable than the $ mode $* since it shifts to the right of the fastest-growing 
mode, towards the right branch of the neutral curve. This will be shown to lead to 
the observed spanwise pairing whereas if the system is allowed to follow the fastest- 
growing path downstream, calculations indicate that the first secondary roll to 
appear would be one with wavenumber &. It should also be noted that both the path 
selecting the fastest-growing mode and the constant-wavelength path of (3.17) in 
figure 8 lie within the Eckhaus band of (1.1). One hence does not expect the 
monochromatic fundamental wave to be destabilized by sideband instability along 
both paths. 
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0 1 2 3 
U 

FIGURE 8. The neutral curve for Pr = 5.5 and other pertinent curves, T_h? dashed lines represent 
the two possible wavelength selection mechanisms: (a) a, = u,(R/R,)H (equation (3.17)) for 
constant dimensional wavelength and (b) the fastest growing wavelength. The two solid curves are 
subharmonic stability bounds r; and r; which are analogous to the Eckhaus bound for sideband 
instability. All monochromatic waves within the 'balloon ' below these bounds are stable to 4 and 
$ subharmonic disturbances. Intersections of the dashed lines with the subharmonic bounds 
represent the first onsets of subharmonic instability for the two paths. 

a 0  a1 a2 aa a4 a6 

4 -0.528 1.475 x 1.744 x -2.669 x 1.297 x - 1.833 x lo-' 
1 0  3.184 x -4.601 x 1.493 x -3.303 x lo-' 3.101 x 10-o 
4 -0.320 1.254 x - 1.154 x 3.723 x -9.469 x lo-' 9.978 x 
2 -0.957 -4.246 x - 1.923 x 1.434 x -4.173 x 4.237 x lo-' 

-1.781 -5.31X10-a 5.20 x -4.285 x 1.456 x lo-' - 1.698 x lo-' 
3 -2.713 -4.714 x lo-% -3.011 x 1.496 x - 1.217 x -2.352 x lo-' 

TABLE 3. Growth rates along path (3.17) in figure 8 (Pr = 5.5, 8, = 24.26) d, = C at9,,(8-8J 
6 

1-0 

In the subsequent nonlinear analysis, we shall require the growth rates d of modes 
with wavenumbers a_*, $zr, $a*, 2a,, if.* and 3a, along path (3.17). These are 
computed from R = R, to R x 80 and fitted to a fifth-degree polynomial in ( f i - l? , ) ,  
with an error no more than 1 %. The coefficients are listed in table 3. It is evident 
that growth rates do not vary linearly with respect to (8-8,) along path (3.17). 
Note also that the fundamental mode m = 1 is neutrally stable a t  8, but all the other 
modes have stable growth rates at 2 = 8, since the expansion coefficients a,,,, are 
negative for m =I= 1. 

Finally, the dimensional versions of our computed cross-stream wavelength in 
table 1 for Pr = 5.5 are compared in table 4 to experimental values estimated from 
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O'*[ 0. I 

I I I I  I I 
4 5 6  10 20 

ATsinO ("C) 

FIGURE 9. Variation of the spanwise wavelength of the primary roll with respect to ATsinB 
from Sparrow & Husar's photograph for water, Pr = 5.5. The various data points are for 
(0 ,AT)  = (25", 12 "C), (35O, 9 "C), ( Z O O ,  17 "C), (35O, 1 1  "C) and (35O, 28 "C) in numerical order. 

f3 (deg.1 E - T ,  ("C) Ama (cm) Ameory (cm) 
35 1 1  0.61 0.424 
25 12 0.53 0.456 
20 17 0.50 0.436 

TABLE 4. Comparison of predicted spanwise wavelength against the experimental data of 
Sparrow & Husar (1969) for Pr = 5.5 and gp /v2  = 5.808 x lo3 K-l ~ m - ~  

the tracer streaks in the photographs from Sparrow & Husar's (1969) experiment 
with water. These photographs show very little downstream variation in the cross- 
stream wavelength beyond the onset of the longitudinal rolls until wavelength 
doubling occurs. These observed wavelengths are in satisfactory quantitative 
agreement with the computed values, as is evident in table 4. For Pr = 5 . 5 , 8 ,  and 
a,, which are only functions of Pr, are 24.26 and 1.292 respectively. Consequently, 
the dimensional wavelength A,  which can be conveniently expressed as 

(3.18) 

has the following value for the case of water, with the fluid properties given in table 
4: 

A = 0.783(ATsin 0);. (3.19) 

This prediction is compared to our estimates of the observed wavelengths from 
Sparrow & Husar's photographs in figure 9. The good agreement is another 
verification of the validity of the modified parallel-flow approximation. 



Spanwise pairing of Jinite-amplitude longitudinal vortex rolls 91 

4. Secondary bifurcations beyond 
Equations (2.13) are invariant under the following two transformations 

&+ 6+/3 translation, (4.1 a )  

(4.1 b )  

Transformation ( 4 . 1 ~ )  simply means that if a solution exists to (2.13), the same 
solution translated by an arbitrary distance /3 in the &-direction is still a solution. 
This is expected of all solutions which bifurcate off the basic flow. Consequently, all 
secondary flows actually consist of a one-parameter family of solutions. This 
degeneracy is simply due to the arbitrariness of the origin of 6. The reflection 
symmetry (4.1 b)  corresponds physically to the two directions of flow of the vortices 
in figure 6 ( b ) .  It is equivalent to a :IT phase shift in the &-direction. Invariance with 
respect to those two transformations induce an O(2) symmetry group. Proctor & 
Jones (1988) and Armbruster, Guckenheimer & Holmes (1988, 1989) have studied 
some generic bifurcations of systems with O(2) symmetry. One ramification of this 
symmetry is that all eigenvalues of the basic state have 2-multiplicity, which has 
already been recognized in (3.7). We shall apply the invariant manifold technique of 
Roberts (1989), which is an extension of the centre-unstable manifold techniques, in 
the next section to obtain analytical estimates to the new solutions and determine 
their stability for the present problem. Specifically, we shall scrutinize subharmonic 
instability which will be shown to precede some of the superharmonic instabilities 
revealed by Armbruster et al. 

Considering only the discrete modes of the main flow that are superharmonics of +*, which is equivalent to imposing a periodic boundary condition in the &direction 
of period 47c/a,, we expand C, w and .i: in (2.13) in terms of the eigenfunctions of (3.2) 
which satisfy this periodicity condition, 

m 4 m / 2 ( ~ )  (J) = m--m CI Am/2(t) ( 4 m / 2 ( T , )  exp (ima, 6/21, (4.2) 
7 :  m+o ~ ~ 1 2 ( ~ )  

where Am12 is the complex mode coefficient, and since the expanded variables are real 

A - m l z  = Ah29 (4.3) 

where * denotes complex conjugate. Since there is no crossing of the normal modes 
as shown in figure 5 ,  all the spanwise discrete modes of (4.2) correspond to the leading 
normal mode. We hence omit intermode interaction between the normal modes. It 
should be pointed out that path (3.17) lies within the Eckhaus bound (1.1). 
Consequently, the primary roll solution with wavenumber a, is stable to sideband 
instability. This is consistent with the lack of roll modulation in the experiments. 
Consequently, the subharmonic instability of the primary roll can be studied with 
the discrete Fourier expansion in (4.2) instead of a continuous one. We have also 
neglected the m = 0 mode in (4.2). In essence, this is an omission of interaction 
between the disturbances and the mean flow. We show in the Appendix that this 
mean flow interaction does not affect our prediction of subharmonic instability to 
leading order. 

4 FLM 231 
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(3.7) and (3.8), (4.2) can also be written as 
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The eigenfunction (GmI2, dmlz, f m 1 3 ) t  is the leading one of (3.2) a t  a = ?pa,. From 

- GmI2 sin (ima, 6/2) 

- f m , 2  sin (ima, 6/2) 

GmI2 cos (ima, 6/2) 

f m , 2  cos (ima, 6/2) 
(4)i- slRe{Am/2(t)j drn,,sin(imol,6/2) 

W 

+ C Im {Am12(t)} dmI2 cos (ima, 6/2) 
m-1 

which is more convenient for computational purposes. 
Equation (2.13) can be formally written as 

where Lo = L(&) and L, Lo and L, correspond to L, Lo and c, of (3.3) and (3.16) and 
N denotes the quadratic nonlinear terms. Substituting (4.2) or (4.4) into (4.5) and 
taking the inner product 

one obtains the amplitude equation 

- rb*o-  

where d,,, is simply the growth rate of the fi mode along the path (3.17) as given 
in table 3. We have also replaced g / t a n  8 by R from (2.12) in the multiplying factor 
to the nonlinear term. Since every nonlinearity in (2.13) contains a first derivative in 
6 and no other 6 derivatives, a factor of (R/R,)i appears in the projected form of (4.7) 
in addition to the original R factor. Explicit dependence on 8 does not appear, 
although 0 is implicitly contained in R, = 8,/tan 8. Dependence on Pr ,  however, is 
extremely complex since the basic state of (2.2), which must be computed 
numerically, is dependent on Pr. In  table 5 ,  the 24 interaction coefficients P[+k,& 
corresponding to a 6-mode truncation of (4.7) are tabulated: These coefficients are 
only dependent on Pr, which is fixed a t  5.5. The symmetries of (4.1) are also retained 
in the amplitude equations where translation symmetry (4.1 a) corresponds to a 
rotation in the phase of the amplitude 

A m / ,  +Arn/,exp (imPac/2) ( 4 . 8 ~ )  

and reflection symmetry (4.1 b)  corresponds to symmetry of (4.7) with respect to 
complex conjugation 

Am/, +A& (4.8b) 

which is evident from the symmetry of table 5. 
It should be noted that (4.7) is an  exact amplitude expansion of (2.13). Although 

the eigenfunctions at criticality are used for the Galerkin-type expansion, the 
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amplitude equations are not restricted to near critical conditions as in many classical 
Stuart-Landau derivations. This is because the growth rate in our problem is not a 
local linear expansion near Rc and the factor R(R/R,)$ premultiplying the nonlinear 
terms is not evaluated a t  R = R, = &tan 0. However, in addition to solving (4.7) 
numerically, we shall also simplify its analysis in the next section by using invariant 
and centre-unstable manifold techniques near certain critical points (Guckenheimer 
& Holmes 1983; Carr 1981 ; Armbruster et al. 1989; Roberts 1989). These techniques 
allow us to obtain analytical results regarding the secondary evolution of the rolls for 
3 beyond 8, that are difficult to decipher from a direct numerical solution of (4.7). 
After these techniques are applied, near-critical amplitude equations similar to  the 
classical ones are then obtained. However, unlike classical theories, secondary 
bifurcations such as the subharmonic instability of the primary roll solution can also 
be analysed. 

We shall first construct the solutions to (4.7) numerically. To this end, we use the 
Cartesian coordinate transform 

A ,  = x, + iy, (4.9) 

and derive from (4.7) twice the number of equations for the real variables x, and y,. 
For Pr = 5.5 and for the range of a values where a t  most the 1, and modes are 
unstable, we have found by numerical solution of (4.7) with various truncations of 
n that a 6-mode model (or a 12-mode model in the Cartesian coordinate of (4.9)) is 
sufficient to  ensure accuracy in lAll to the third decimal place in the regions of 
interest. We use a continuation scheme for the solution which is similar to our earlier 
solution of the Kuramoto-Sivashinsky equation (Chen & Chang 1986). I n  many 
cases, it is more convenient to express the amplitudes in polar coordinates 

A ,  = r , ( t )  eiBt@). (4.10) 

In  both coordinates, a finite-amplitude standing roll is represented by a fixed point 
in (x,, y,) or ( rL ,  0,). Travelling rolls which propagate in the cross-stream direction z 
are represented by a limit-cycle in the multi-dimensional Cartesian coordinate (z,, y l )  
but by constant amplitudes r ,  and phases 0, which vary linearly in time in the polar 
coordinate. 

The primary roll solution with only superharmonic modes (1,2,3) is shown in 
figure 10 for 0 = 20". The general unfolding of superharmonic solutions to amplitude 
equations of systems with O(2) symmetry have been studied by Armbruster et al. 
(1988) and Proctor & Jones (1988). As is consistent with their prediction, a finite- 
amplitude roll solution bifurcates supercritically from 2, = R, tan 20" = 24.26. As 
evident from the amplitudes listed in table 6, this primary roll solution contains 
mostly the fundamental and the overtone with negligible contribution from the 
higher superharmonic and zero contribution from the subharmonics. It retains the 
same cross-stream wavelength as a t  criticality for all values of a and spans from Ec 
to approximately a = 200 where the first overtone-2a, destabilizes. However, before 
this first overtone dominates such that a splitting of rolls occurs, Armbruster et al. 
(1988) have shown by a centre-unstable manifold theory that the primary roll will be 
destabilized by a travelling wave instability involving only the fundamental a, and 
the overtone-2a,. The ensuing travelling roll solution will eventually yield wave 
packets (travelling waves) and even heteroclinic bifurcations which have been linked 
to intermittent bursts in boundary layers (Armbruster et al. 1988; Aubry et al. 1988). 
For the present problem, this travelling wave instability of the primary roll actually 
propagates in the cross-stream direction. Such a transverse wave instability of the 
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FIGURE 10. Bifurcation diagram for the amplitude of the fundamental mode as a function of 8 
along the co_nstant wavelength path of figufe 8 for Pr = 5.5 and 6 = 20". The subharmonic roll first 
appears a t  R; = 41 .O but is annihilated a t  R, = 49.95 via a saddle-node bifurcation. Solid branches 
denote stable solutions and hatched ones denote unstable solutions. 

a 
Primary 
24.35 
30 
35 
41 (8;) 
45 
50 
55 

0.0021 
0.1206 
0.1378 
0.1431 
0.1431 
0.1413 
0.1386 

0.002 
0.0685 
0.0959 
0.1125 
0.1189 
0.1240 
0.1272 

0.095 
0.568 
0.696 
0.786 
0.831 
0.878 
0.918 

0.000 
0.0170 
0.029 7 
0.0392 
0.043 1 
0.046 5 
0.04903 

Secondary subharmonic roll 
42 0.1815 0.1216 0.670 0.0553 0.622 0.0587 0.0062 

0.2069 0.1316 0.636 0.0736 1.102 0.0589 0.0116 44 
46 0.2057 0.1246 0.6057 0.0759 1.1204 0.0412 0.0174 
49.95 (8,) 0.1281 0.0660 0.5152 0.0392 1.1005 0.0266 0.0256 

TABLE 6. Numerical solutions of the amplitude equations (Pr = 5.5 and 6 = 20"). Phase differences 
$1=2el-e2 and $3=e,+e2-e3 are - x ;  $2=2e;-el-e, is 0, $4=e2-eB-e4 is x and 
$, = e3-eg-ei is 2 ~ .  

rolls has never been observed experimentally although downstream travelling waves 
are generated from rolls in a Couette flow when heated sufficiently from below (Clever 
et al. 1977). We show subsequently, both numerically in this section and analytically 
in the next, that for the present problem the primary roll is first destabilized by a 
subharmonic instability which precedes the travelling wave instability. This is, of 
course, consistent with experimental observations. 

To study subharmonic instability of the finite-amplitude vortices, we insert the 
subharmonic modes 3, $ and $ of the basic flow in (4.7). As shown in figure 10, the 
finite-amplitude primary roll destabilizes to subharmonic instability a t  a = a; = 
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41.0. (Note that this 8; corresponds to a subharmonic instability of the primary roll 
solution and not the subharmonic instability of the basic flow where a?i vanishes. In 
fact, bifurcation of a pure subharmonic mode from the basic flow does not exist.) As 
shown in figure 10 and table 6, a finite-amplitude subharmonic roll emanates from 
the primary roll a t  trhis bifurcation point. This subharmonic roll still receives some 
non-zero contribution from the fundamental mode (rl in table 6) but it is dominated 
by the subharmonic mode (r; in table 6). In figure 10, only the rl component of the 
subharmonic roll solution is depicted. The r; component increases monotonically in 
the immediate neighbourhood beyond B; as shown in table 6. The travelling wave 
instability of Armbruster et al. (1988) was not observed prior to 8; where the 
subharmonic instability first appears. Moreover, as is evident from figure 8 and 
table 6, even though the 8 mode is nearly unstable (with its growth rate at  8; equal 
to -0.08), the secondary subharmonic roll which represents the merged rolls has a 
negligible 8-mode content. Hence, this subharmonic destabilization of the primary 
roll is due mainly to the f mode and the 8 mode is not excited in the nonlinear 
interaction. This is quite distinct from the mechanism in free shear layers where 
Kelly (1967) has predicted the excitation of the $ mode. The contribution of the 

mode will be scrutinized in the next section. 
The phase shift between the 1 mode and the $ mode near the secondary bifurcation 

point Rt is determined by 
e1-2ei = 91+q52+2q54, (4.11) 

where the phase differences are defined and tabulated in table 6. Along the new 
secondary roll, table 6 indicates that is equal to -K, q52 is zero, and q54 is x .  
Consequently, the dominant t mode is shifted relative to the 1 mode by half of the 
wavelength of the 1 mode such that the maxima (minima) of the f mode is 
asymmetrically located a t  (in phase) and a (in phase) the fundamental wavelength 
from the maxima (minima) of the 1 mode. Since the maxima and minima of the 
modes correspond to the upward- and downward-flowing sides of the roll in figure 
6 (b),  this means that the sides are likewise spatially dislocated after the rolls merged. 
This is consistent with the dislocation of the tracer streak, which resides in the 
upward-flowing side as clearly shown by the photographs of Sparrow & Husar (1969), 
in the schematic of figure 1. This phase shift will be scrutinized in more detail in the 
next section. The secondary subharmonic roll solution with a large f mode content 
does not persist indefinitely, however. It quickly undergoes a saddle-node (turning 
point) bifurcation at  Bt = 49.95. This saddle-node bifurcation results from a complex 
nonlinear interaction among the fundamental, overtone and the 4 subharmonic 
modes of the basic flow along path (3.17). As shown in table 6, all three modes 
contribute non-negligibly to the secondary subharmonic roll near 8,. Although the 
linear growth rates of both the fundamental a n d j  subharmonic modes of the basic 
flow continue to increase downstream beyond Rt on path (3.17), their nonlinear 
interaction has eliminated the secondary subharmonic roll entirely. The subharmonic 
component r; of this solution actually decreases slightly near & in spite of the 
increasing linear growth rate. The possibility of eliminating a finite-amplitude roll 
through a saddle-node bifurcation is quite surprising although it is consistent with 
the experimental observations of Sparrow & Husar (1969) and Haaland & Sparrow 
( 1973). The physical mechanism behind this dramatic nonlinear phenomenon 
remains to be studied. Beyond &, the primary roll still exists but it remains unstable 
to subharmonic disturbances as shown in figure 10. Consequently, stable rolls do not 
exist beyond &. Our numerical integration of the initial-value problem shows 
irregular but bounded trajectories at R = 52.0 as shown in figure 11. This implies 
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FIQURE 11. The irregular temporal behaviour at 2 = 52 beyond B,. 

0 (deg.1 
FIQURE 12. The dependence of the various critical Reynolds numbers as functions of inclination 
angle 19 for Pr = 5.5. The path chosen is the constant dimensional-wavelength dashed curved in 
figure 8. 

that the merged rolls are quickly annihilated by irregular fluctuations. Even this 
prediction is consistent with the experiments of Sparrow & Husar (1969) and 
Haaland & Sparrow (1973). For an inclination angle of 35" (Pr = 5.5, T, - T, = 11 "C 
and gB/v2 = 5.808 x lo3 k-' C M - ~ ) ,  estimates from their tracer streak photographs 
indicate that RI/R, = 2.8 and RJR; = 1.3. In contrast, our predicted values are 
R;/R, = 1.7 and RJRL = 1.2. Interestingly, the data of Gilpin et al. (1978) for a 
heated Blasius layer (fim = 7.6 cm/s, AT = 5.1 x also show a rapid dissipation 
after the rolls merge. Their transition points yield Ri/R, = 1.7 and R,/Ri = 1.7. This 
suggests that very similar mechanisms occur for the two systems. Finally, we depict 
the computed critical Reynolds numbers for various inclination angles 6 in figure 12 
for Pr = 5.5. 
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We have also carried out a global analysis within the neutral curve of figure 8, 
instead of restricting ourselves onl j  to path (3.17). For this effort, we have computed 
the growth rates of all modes d,(R, a) within the region depicted in figure 8. A fifth- 
order expansion in both (a-a,) and (8-8,) is then carried out, analogous to the 
single-parameter expansion in table 3 along path (3.17). The nonlinear coefficients 
P[n,  m] of (4.7) are only dependent on Pr and hence are path independent within the 
neutral curve. We then proceed along a family of constant-a paths, beginning a t  the 
neutral curve. Along each path, we numerically construct the primary roll solution 
from (4.7) and analyse its stability. For all paths taken, the primary roll is either first 
destabilized by the + subharmonic or the subharmonic. The dominant subharmonic 
is discerned from the eigenvector at the onset of subharmonic instability. The i mode 
is dominant for primary rolls near the right neutral curve and the mode is dominant 
for those near the left neutral curve. The two computed subharmonic stability 
bounds ri and r; for all primary rolls within the neutral curve are depicted as solid 
curves in figure 8. The 'balloon ' region bounded above by these two curves contains 
primary rolls stable to  both i and $ subharmonic disturbances. The point 84 
computed from path (3.17) lies a t  the intersection of this path with r;. The bound r; 
for instability to the subharmonic emanates from a resonant point on the right 
neutral curve (8, a) with both a and +a are neutrally stable, namely a t  the given 8, 
a lies on the right neutral curve and ;a lies on the left neutral curve. The r; bound 
emanates from another resonant point @,a) on the left neutral curve where a is 
neutrally stable and fu is also neutrally stable on the right neutral curve. 

5. Analytical construction 
Some of the computed results in the previous section using six complex amplitude 

equations can be estimated with a local centre manifold or centre-unstable manifold 
analysis near the bifurcation points. There are several advantages to such an 
analytical construction other than verification of our numerical values. The resulting 
amplitude equations are lower in dimension and are far simpler to analyse than 
the high-dimensional systems of the previous section. The classical nonlinear 
theories, such as those developed by Kelly (1967), Janssen (1986) and Monkewitz 
(1988), also yield low-order amplitude equations involving only the unstable and 
neutral modes. Consequently, the analysis provides a new derivation of the classical 
equations without using the usual multi-scale techniques. Carr & Muncaster (1983), 
for example, have employed the centre manifold theory to derive the Stuart-Landau 
amplitude equations near the critical point where only the fundamental mode is 
dominant. We shall use extensions of this theory, the centre-unstable and invariant 
manifold theories, to obtain amplitude equations near second bifurcation points 
where multiple dominant modes appear, such as at 2; where the fundamental, & and 
Q modes are all dominant. The travelling wave instability of Armbruster et al. also 
occurs when the fundamental and the first overtone are both dominant. Like the 
Stuart-Landau equation, these low-order amplitude equations allow us to  scrutinize 
the key nonlinear interactions that govern some distinct qualitative features of the 
transitions. Such features include direction of bifurcation, stability of bifurcated 
solutions and the observed shift after coalescence. Since our amplitude equations are 
general to any system with quadratic nonlinearity and O ( 2 )  symmetry, the 
identification of the key nonlinear coefficients is extremely useful. It allows us to  
predict some behaviour of a given system without resorting to the brute-force 
numerical integration of the previous section. Merely the key nonlinear coefficients 
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need to be evaluated. We shall verify these predictions from low-order amplitude 
equations to the exact numerical results of the previous section. We also use the 
centre-unstable manifold theory to justify our omission of mean flow interaction in 
the Appendix. 

The six-dimensional version of (4.7) is 

d A 1  

dt 
-- * - d;A;+&{P[l,  - i ]A,A!+P[$,  -1]A& 

+P[2 ,  -$]A,Ar+P[%, -2]A;A,*$P[3, -:]A,Ap$}, ( 5 . 1 ~ )  

- d,A1+&{P[ i , i ]Af+P[2 ,  - 1]A2A:+P[3,  -2]A,A,* dA 1- 
dt 

+P[$, - i ]ArAf+P[%,  -$]AtAr} ,  (5 . lb)  

d A 3  

f = drAi+&(P[1,i]A;A1+P[2, - i ]A,A!  +P[:, - 1]AiA1* +P[3 ,  -$]A,A;},  
dt 

(5.1 c) 

dA 
dt = d,A,+&{P[l ,  1 ]Ai+P[3 ,  - l ] A , A : + P [ : ,  - i ] A r A f + P [ $ , i ] A t A i } ,  ( 5 . l d )  

d A b  
A = d~Ar+&{P[a, i ]A,A:+P[3,  -;]A,A! + P [ i , $ ] A , A ; } ,  
dt 

(5.1 e) 

= d, A ,  +&{P[ 1 , 2 ]  A ,  A ,  + P[$, $1 At +P[& 3 A; A;}, ( 5 J f  1 dt 

where & = R(R/R,)i = R(R/&)i/tan 9 (5.19) 

and the growth rates are evaluated along path (3.17), 

d, = d,@, a*@)). 

Along path (3.17), these six modes destabilize in the order of modes, 1,  ;, i, 2 , :  and 
3.  In fact, modes Q and 3 are always stable in the region of interest. In the general 
theory of centre-unstable manifold projection (Armbruster et al. 1989), the dynamics 
of the dominant unstable and nearly neutral modes is deciphered by expressing the 
stable modes in terms of these modes. Upon substituting such centre and unstable 
manifold expansions into the dominant unstable and nearly neutral modes, one will 
then have reduced the system equations to  a far smaller number of amplitude 
equations. 

As an example, we begin by deriving the Stuart-Landau equation near &. Near 
this bifurcation point, the only nearly neutral mode is the fundamental mode. 
Because the am_plitude A ,  is complex, (5.1) indicates that there are two zero 
eigenvalues at  R,, which is a manifestation of the O ( 2 )  symmetry. We seek the 
direction and amplitude of the finite-amplitude roll near along path (3.17) which 
is the usual information offered by the Stuart-Landau equation. Since the convective 
nonlinearity in (2.13) and its counterpart in the amplitude equations (5.1) are 
quadratic, the nonlinear ‘saturation’ of the linear growth cannot be due to 
interaction of the unstable fundamental mode (m = 1 )  with itself. The centre 
manifold theory will show instead that the pertinent interaction is between the 
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fundamental mode and its first overtone. Since modes other than the fundamental 
are stable a t  and near Re,  we seek an expansion of the two-dimensional centre 
manifold for the stable modes with indices 1 a t  R/EC = 1 : 

where h, - O(lAl12) and substitute this into the amplitude equation for A,. We shall 
retain up to O(lA113) terms which is the lowest order necessary to determine the 
amplitude of the roll. To this order of resolution, the only nonlinear term in the A ,  
equation that contributes is A:A, while the other nonlinear terms are O(lA,I*)). 
Consequently, near 8, and to O ( 3 )  in the amplitude of the roll solution, the only 
pertinent equations are 

1- - d , A ,  +AcP[2 ,  - 1]A:A,, ( 5 . 2 ~ )  
dA 
dt 

A ,  = h,(A,,AT) 1 =I= 1 ,  

= d , A , + R , P [ l ,  1]Ai, 
dt 

(5.2b) 

where Re is actually €2, but we shall retain the fi for now. The extended centre 
manifold for 8 near 8, is then to leading order (see Carr 1981 and Guckenheimer & 
Holmes 1983 for derivations) 

(5.3) 
where d; denotes the growth rate of the first overtone at  a = f i e ,  and all other modes 
are negligible in the present resolution. Note that R is evaluated at R, (and and 8,) 
for this local theory. Substituting (5.3) into ( 5 . 2 ~ )  yields the following leading-order 
amplitude equation near 8,, which is essentially the classical Stuart-Landau 
equation : 

A ,  = - B , P [ l ,  l]A;/d;+O(IA,14, Il-8/8,~ IA112), 

Although the linear growth rate of (5.4) is valid for a l l 8  because of (3.17), the centre 
manifold theory is only valid if d, - O(ll-8/8,1) < 1. This then imposes a constraint 
on the region of validity of (5.4). It is only valid if the omitted terms are smaller than 
d,A,,  namely 

and hence 11 -8/Rcl must be small and we are restricted to a neighbourhood of Re. 
We have hence derived the Stuart-Landau equation using centre manifold theory. 
In this original version of the centre manifold theory, d, is expanded to leading order, 
namely linear, in 1 -E/8, such that the linear growth term is of O(lA,I3). However, 
Roberts (1989) has recently pointed out that, since the omitted terms are of O((A,I5) 
or (as in most cases) even higher, one could actually expand d, to O(ll -8/&J;). For 
the same reason, R 2 / d ,  in the nonlinear interaction term does not have to be 
evaluated at the critical point but can be expanded to the next order in 11 -8/8,Ii. 
In this analysis, we shall adopt Roberts’ invariant manifold approach and will in fact 
relax these restrictions all together and evaluate the actual values of d,, Re and d ,  
along path (3.17). This is, of course, only consistent with the omitted terms in (5.4) 
if we are near the critical point. The resulting equation is then 

[All - O(l1-8/RJi) 

dt = d1A,-R2P[l, 1]P[2, - 11 IA,12A1/d,. (5.5) 

Consider a polar coordinate transform 

A ,  = rl exp (8,). 
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Equation (5.5) is then transformed to 

dr, = {dl-R12P[1, 1]P[2, -1]r2/d2}r1, 
dt 

- 0. do 2- 
dt 

( 5 . 7 4  

(5.7b) 

From tables 3 and 5, d, is positive for 8 > &,, d, is negative (since the superharmonic 
is stable near 8,) and P[1,1]P[2, - 11 is negative for Pr = 5.5.  Hence, the primary 
roll solution, which is a mixed-mode solution since it contains both the fundamental 
and its first overtone, bifurcates supercritically a t  8, and the amplitude of its 
fundamental a, mode is 

( 5 . 8 ~ )  
P[1,1]P[2, -13 I: 8,(&8,)2 tane 

which shows that the roll amplitude increases with i9 due to the increasing normal 
amplitude of the buoyancy force. The amplitude of the superharmonic mode in the 
primary roll is given by the centre manifold projection of (5.3), 

(5 .8b)  

Hence, the amplitude ratio in the primary roll near 8, is 
r2/r1 = Id,/d21+IP[1, 1 1 / ~ [ 2 ,  - 111; ( 5 . 8 ~ )  

which is independent of 8. Note that the first overtone mode r2 of the main flow is 
actually linearly stable near 8,. It has been excited through nonlinear interaction to 
dissipate energy from the fundamental. This interaction between the fundamental 
and the first overtone also determines the direction and stability of the primary 
roll solution that bifurcates from 8,. A simple analysis of ( 5 . 7 ~ )  reveals that if 
P[l, l]P[2,  - 13 is negative as in the present problem, the bifurcation is supercritical 
and the solution is stable to disturbances with wavenumber a,. If P[ 1 , 1 ]  P[2, - 11 is 
positive, the bifurcation is subcritical and the new solution is unstable. The term 
&[l, 11 P - 2 ,  - 1]/d2 is the Landau constant of the Stuart-Landau equation if it is 
evaluated at the critical point. 

The above techniques can also be applied in regions on path (3.17) where other 
modes of the basic flow become neutrally stable. However, at these points, the 
fundamental mode m = 1 and possibly others have already destabilized and there are 
hence more than one dominant (master) mode. The centre-unstable manifold 
techniques of carrying out these expansions are identical to those of the centre 
manifold expansion and they have been described in detail by Armbruster et al. 
(1989). For example, Armbruster et al. (1989) have shown that the travelling wave 
instability of the primary roll solution occurs when the first overtone of the basic flow 
is nearly unstable, d, - 0. This allows us to study the secondary instability of a finite- 
amplitude primary solution with amplitude equations derived with the basic flow as 
the reference point. Since there are now two dominant modes, the fundamental and 
the first overtone, and since the subharmonics are ignored here, the centre-unstable 
manifold expansion involves only one overtone (m = 3), 

= h3(A 1 I A: 3 A 2, At)  
= -RP[l, 2]A1A,/(d3-d1). (5.9) 
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Note that, as before, we do not evaluate R,  d, and d, at the point where d, vanishes 
exactly but follow Roberts in retaining their 8 dependence. It is understood, of 
course, that (5.9) is only valid near this point. Upon substituting (4.9) into the 
evolution equations of A, and A,, one obtains the two complex amplitude equations 
which determine the interaction between the fundamental and its overtone away 
from 8, and near d, = 0 on path (3.17), which occurs at  very large fi values, 

= A,(d,-a,IA,12)+&'[-1, BIATA,, 
dt 

( 5 . 1 0 ~ )  

(5.10b) 

where 
a, = PP[ - 2,3] P [  1,  2]/(d, -al), a, = P P [  - 1,3] P [  1,2]/(d, - d,). 

Comparing (5.10) to (5.2), it is clear that the terms a, and a2, which arise from 
projection of the A ,  dynamics, become important away from 8,. Introducing polar 
coordinates as before 

A ,  = r,exp (ie,) (5.11) 
and the phase difference 

4 = 2 4  - e2 (5.12) 

one obtains the following evolution equations for the amplitude and the phase lag: 

dr 
dt 
1- - r , ( d , - a , r ; ) + ~ P [ - 1 , 2 ] r 1 r 2 c o s $ ,  ( 5 . 1 3 ~ )  

(5.13 b) 

- " = - R ( ~ P [ - I , ~ ] ~ , + P [ I ,  l]r:/r,)sin$. 
dt 

( 5 . 1 3 ~ )  

Note that 

(5.14) 
d9 

A= -R~[ -1 ,2 l r , s in$ ,  "=RP[I, ~ ] ( r f / r ~ ) s i n ~  
d6 
dt dt 

such that a fixed point of (5.13) with vanishing sin$ implies that 0, and 8, are 
constant and the fixed point corresponds to a steady solution (standing roll) from 
(5.11). On the other hand, if sin$ does not vanish for a fixed point, 8, and 8, vary 
linearly with time and it corresponds to a travelling roll. It is an easy calculation to 
determine the fixed points of (5.13). The primary standing roll solution, which was 
approximated by (5.8) near 8,, now takes the following form: 

sin$ = 0, cos$ = -1 ,  ( 5 . 1 5 ~ )  

(5.15b) 

( 5 . 1 5 ~ )  

Note that while ( 5 . 1 5 ~ )  reduces to ( 5 . 8 ~ )  after substituting (5.8b) as u2 vanishes, 
(5.15b) is singular in this limit. The content of the overtone in the primary roll is so 
high that it escapes the local approximation of (5.2) and (5.4). It is seen from ( 5 . 1 5 ~ )  
that the fundamental and the superharmonic modes of the standing roll solution 
have a phase shift of K away from R,. This is also consistent with our numerical result 
of table 6. The previous local analysis near RC could not decipher this phase shift (see 
(5.7 b)) .  

r2 = { -&P[ - 1,2] + (fi*P[ - 1,212 + 4a, d,)4}/2a1, 

rl = { r ,  d,/(&P[I, 11 + r2 a,)};. 
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It is striking that the travelling roll solution with a non-vanishing sin4 can be 

r z / r l  = 1~[1 ,1 ] /2  P[ - 1,211; (5.16) 

which is true for all R and O !  The estimated value from (5.16) is 1.019. Consequently, 
to leading order, when the amplitude ratio of the primary roll solution reaches the 
critical value of (5.16), it becomes unstable to travelling roll instability. The resulting 
travelling roll then retains this amplitude ratio for all subsequent R. Although we did 
not compute this travelling roll solution numerically in the previous section because 
such a spanwise-propagating wave has not been observed, it is clear from table 6 that 
our primary roll solution has already been destabilized by subharmonic disturbances 
when r g / r l  = 0.786. The travelling wave instability of Armbruster et al. (1989), which 
occurs at  r Z / r l  = 1.019, is hence irrelevant to the present problem and we shall focus 
on the observed and computed subharmonic instability. Nevertheless, the above 
analysis involving the phase equations of (5.14) implies that standing roll and 
travelling wave solutions correspond to different phase resonances. For a standing 
roll, dO,/dt must vanish for all dominant modes and (5.14) implies that sin$ = 0. 
For a wave travelling at constant speed, dO,/dt is a non-zero constant and sin $ must 
be a non-zero constant. Hence, a standing roll that does not propagate possesses a 
very unique phase resonance between its dominant modes. This will also be true for 
the standing rolls after they have merged in the presence of subharmonic instabilities. 

A t  I?; on path (3.17) in figure 8, the fundamental and the subharmonic modes of 
the basic flow have already destabilized. However, the i mode is also nearly unstable 
with a growth rate of d; = -0.08. Consequently, all three modes are dominant. We 
shall derive the master equations for these modes to study the interaction between 
the and modes. However, it is understood that if other paths closer to the neutral 
curves in figure 8 are taken, either the t or the t mode becomes stable and the 
equations can be further reduced. Also, unlike the travelling wave instability, the 
first overtone (m = 2) is now stable. The expansions are then 

easily derived from the phase equation (5 .13~)  to yield the amplitude ratio 

1 P [  1,  A ,  A; 
Ag * -R 

dj-dl -d; ' 

a P[%, $1 A% 
A ,  N -R 

d3-2d; ' 

(5.17b) 

(5.17 c )  

We note that, unlike the expansion near A, in (5.3), d, does not vanish there and A; 
and A; have become dominant modes. Substituting (5.17) into (5.1) then yields the 
master equations for modes 1, 4 and %, 

-- dA1 - { d , + T , ~ A , ~ 2 + ~ ~ A ~ ( 2 + T ~ ~ A ; ~ 2 } A l + D 1 A ~ + 0 2 A ~ A ; + ~ A ~ A ~ A ; ,  (5.18~) 
dt 

dAl 
dt 

d A 8  

dt 

2- - {d;+ T51AJ2 + T,IA;12+ T,IA;12}A;+D,AfA, +D,A:A;+ G A I A : ,  (5.18b) 

= { d ~ + T , ~ A l ( 2 + ~ ~ ~ A ~ ~ 2 + T , , ~ A q ~ 2 } A ~ + D , A ; A l + T l z A ~ A ~ ,  (5 .18~)  
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are related to the 

D, = RP[;, 3, 
D,  =El'[;, 13, T, = -RzP[ l ,  1]P[-1,2]/(d,-2d1), T, = 0, 

D, = RP[ - t ,  3, D, = I&[ -$, 11, D, = RP[ - 1,  t], 

q = - R T [  - t ,  3 P[ 1, ;I/(+ - d, - d;), q = - R T [  - 1,2] P[$, Q/(d, - 4- d;), 

$ = T, = 0, 

T,, = -R"[ -;, 21 P[ 1, l]/(d, - 2 4 ) .  

q = - ~ " p [ - t , 2 ] P [ $ , t ] / ( d z - d ; - d ~ ) ,  
T ,  = -PP[ -:, 2]P[ 1 ,  l]/(d,-2d1), TB = -@P[ - 1,  E]P[l, t]/(d;-d, -+), 

T,, = -R2P[ -%, 3]P[g, $ ] / ( d 3 -  2 4 ) ,  T,, = -&P[ -:, 2]P[f, t]/(d, -d+-d;), 

Since can be easily absorbed into the definition of the nonlinear coefficients 
P[n,m], the above master equations are valid for any system with O(2) symmetry, 
quadratic nonlinearity and three dominant modes in $, 1 and t .  

The polar representation of (5.11) can be again applied to yield 

dr 
dt 
1- - {d, + q r; + q r,"} r, +D, r; cos $4, +D,  r;r$ cos $, + q r,  r;r;cos ($h2-$,), 

-- ' - {d; + T, r!} r; +D3 rl r; cos $, +D4 r;rl cos $, + 

- ' = {dt+ TB rf + q, + T,, T i }  r;+Df, 

* = - (D, r;r; sin 4, -D, ri sin 

( 5 . 1 9 ~ )  

dn 
dt 

drs 

dt 

r; cos (4, - #,), 

cos $2 + q, rf Ices ($2-$1), 

+ ~4 r;r;sin ($,- $,) -20, rl sin 4, 

-- [D4 rl r; sin $ z  - T, r: $sin ($, - $,)I, 

(5.19b) 

( 5 . 1 9 ~ )  

1 
dt rl 

2 

r; 
(5 .19d)  

1 * = -- [D, r;rl sin $, + T,, r; r;sin ($,- 
dt r; 

1 2 

rl 
- - [D, r+ r; sin $, -D,  r; sin $,I - % r+ r; sin (4, - 4,) 

-D3 r1 sin $, -- [D4 rl rtsin $, - T,  r; r;sin (4,- $,)I. (5.19e) 

Like before, the three phase equations reduce to two equations for the phase 
differences 

(5.20 a, b )  

1 
ri 

2 

9, = el - 2e;, 4, = e;- el - e+, 

2- de - -D, ri  sin $Jrl +D,  r;r;sin $, /r l  + q r;r;sin ($2-q51), (5.21 a )  
dt 

del 1 
2 = - [D, rl r+ sin $, +D, rl r; sin $, - 
dt r; 

where 

r: r; sin (4, - $,)I, (5.21 b )  

de3 1 
dt r; 
>--- - [D, r; r1 sin 4, + T,, rt r; sin ($, - #,)I (5.21 c) 
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One can decipher some important properties of standing roll solutions without 
solving (5.19) explicitly. For the standing solutions, the phase evolution in (5.21) 
must again' vanish exactly. Consequently, for a subharmonic roll with negligible 
$-mode contribution, (5.21) implies a certain phase resonance among all three 
dominant modes 

sin $, = sin $, = 0. (5.22) 

However, from (5.19b), since D, = 2&P[-$, 13 is positive from table 5 and d+ is 
positive in the region where the subharmonic roll exists, the subharmonic roll with 
no $-mode contribution is a standing one if and only if cos is negative. Hence, from 
(5.22), one concludes that 

$1 = x ,  (5.23) 

which is consistent with our numerical result in table 6 that there is a spatial phase 
shift between the rolls prior and after coalescence a t  w;, as shown schematically in 
figure 1 .  In  general, the sign of the nonlinear coefficient P[ -$, 13 determines this 
phase shift. If P[-$, 11 is negative, the standing rolls do not shift spatially after 
coalescence. Physically, with negligible contribution from the 1 mode, the D, term in 
(5.19b) is the only nonlinear dissipation term which arrests the linear growth rate of 
the subharmonic mode. It must hence be negative such that energy can be 
transferred to the fundamental mode to form a saturated subharmonic roll. The 
fundamental, which is also linearly unstable, transfers the energy in turn to its stable 
overtone through nonlinear interaction. 

To estimate I$ and the amplitude ratio r2 / r1 ,  it is necessary to return to the 
complex amplitude equations of (5.18). The polar representation (5.19) is singular 
when r; or r; vanishes and is hence unsuitable for linearizing about the primary roll 
solution. We shall linearize (5.18) about 

ti)=(!) 
where the amplitude of the primary roll IA:Iz = rt is derived from ( 5 . 1 9 ~ )  as 

(5.24) 

(5.25) 

This estimate is favourably compared to the numerical values in figure 10,. The phase 
d1 will not be relevant. The resulting linearized equations are then 

d 
- Al = (d, + 3T, r:)Al, 
dt 

d 
-A; = (d; + TB r:) At + D, rl A;+D,,  r:Af, 
dt 

( 5 . 2 6 ~ )  

(5.26 b) 

( 5 .26~)  

where d, = A,-AS,. The deviation variable A, of the fundamental mode in ( 5 . 2 6 ~ )  
is decoupled from A; and A;. Insofar as T,rt  = -d ,  from (5.25), the eigenvalue 
corresponding to ( 5 . 2 6 ~ )  is -2d, < 0. This simply reflects the earlier result that a 
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supercritical solution is stable to disturbances of its own wavelength. The linearized 
dynamics of the t and modes then determines the stability of the primary roll with 
respect to the $, and subharmonic disturbances. Their equations in (5.26b) and 
(5.26~) along with their conjugates yield the Jacobian 

o d;+T,r: D4r1 )*  
d; D3r1 D4r,  T,r; 

(5.27) 
D,r, q 2 r :  d;+T,r: 0 

Owing to the various symmetries of the 2 x 2  submatrices in J, it can be readily 
shown that J is similar to the block-diagonal matrix 

.-( D,r, dg T,rf 

T,, D, rl 

where ( 5 . 2 8 ~ )  

(5.28b) 

The stability conditions then become trace J1 < 0, traced < 0, detJ, > 0 and det 
J, > 0, which are very cumbersome to analyse. Simplification can be made, however, 
if one expands the traces and determinants of J, and J, about the resonant point of 

d ,  = d; = 0, (5.29) 

which is where 8; emanates from the neutral curve in figure 8. In the neighbourhood 
of this point where Idl] N ld;l - O(1rJ2), which defines the size of this neighbourhood, 

trace J, N d; + O( I rJ )  < 0, 

traced N d;+O(lr,l) < 0, 

and hence both trace conditions are satisfied and one needs only to examine the 
determinant conditions. Since 141 9 Id41 - O(lr,12) in this neighbourhood, the two 
determinants can be shown to be related by 

det J, = det J, - 20, dt1rJ. (5.30) 

Since d; is negative near the resonant point (5.29) and D ,  is positive in the present 
problem, det J, > det J, and the tightest bound is given implicitly by a vanishing 

de td  = (d;-D, r,) (d;+ TB rf)  - (0, r,  - T,  r ; )  (0, rl - T,, r ; )  - (d;-D, rl) dg-D4 D,  r;, 
(5.31) 

where d; and dt vary with 2 along (3.17) and so does rl according to (5.25). Although 
an explicit analytical estimate for 8; cannot be written down, one sees from (5.31) 
that 

and since D, and D, are positive while D, and d; are negative from table 5 ,  one 
concludes that di(8;) is positive and hence the primary roll is unstable to subharmonic 
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disturbances after the subharmonic mode of the basic flow has destabilized. Our 
estimates of 8; from (5.31) yields 46.5 which is very close to the numerical value of 
41.0 along path (3.17). One can also estimate the amplitude ratio r2/r1 from (5.25) 
and ( 5 . 1 7 ~ )  with A; = 0 after 8; has been estimated. We obtain a value of 0.730 
which is also close to the exact value of 0.786 in table 6. Condition (5.31) is, of course, 
only valid for paths like (3.17) which lie close to the resonant point on the right 
neutral curve. A similar expansion can be carried out, however, near the resonant 
point d ,  = d; = 0 for paths near the left neutral curve. 

6. Summary and discussion 
We have constructed finite-amplitude longitudinal rolls in an inclined free- 

convection boundary layer and showed that they first become unstable downstream 
from the leading edge to static disturbances with spanwise wavelength twice that of 
the primary rolls. This subharmonic instability causes the adjacent rolls to merge. 
The t mode in the secondary roll also has a spatial phase shift relative to the primary 
1 mode such that an asymmetric dislocation of the rolls occurs beyond the transition. 
This shift is shown to be caused by a positive interaction coefficient D, which governs 
the contribution to the A; mode dynamics from the nonlinear interaction between the 
t and 1 modes. A negative D,, which may occur at  other Pr values and definitely for 
other systems, will not induce a phase shift. Our analysis also reveals that the 
superharmonic travelling wave instability of the primary roll, which had been 
discovered by Armbruster et al. (1989), is generally preceded by the subharmonic 
instability studied here. Since path (3.17) of the present system in figure 8 skirts the 
Eckhaus bound (1 .  l ) ,  the subharmonic instability also precedes sideband instability. 
Consequently, one expects subharmonic instability, which includes 8; and 8; in 
figure 8, to be a dominant instability of primary rolls in many non-dispersive systems 
with 0(2)  symmetry. 

The ultimate physical manifestation of the subharmonic instability occurring in 
the flow studied here is a pinching (or dislocation) phenomenon similar to a 
propagating wavenumber adjustment mechanism observed by Busse & Whitehead 
(1971 ; see their figure 15) for supercritical Rayleigh-Be'nard convection. Here, the 
adjustment takes place spatially in the steady state, and so we cannot describe the 
local details of the adjustment on the basis of the present approach. A considerable 
amount of work (for a recent review, see Walgraef & Ghoniem 1990) has been devoted 
to the study of dislocations, including some research relevant to Rayleigh-Be'nard 
convection (e.g. Cross & Newel1 1984). Most of this work is based on model one- 
dimensional amplitude equations which might be applicable here if the adjustment 
were sufficiently gradual. However, as indicated in figure 1, the region over which the 
adjustment occurs is comparable to the wavelength of the primary roll, and so the 
direct relevance of such results is not yet clear. 

The saddle-node annihilation of the subharmonic standing rolls a t  & is an 
instability of the secondary merged rolls that is difficult to decipher from the master 
amplitude equations for modes 1, and t ,  such as those derived in $5 and those by 
Janssen (1986) for sheared waves and Kelly (1967) for free shear layers. Instead, a 
numerical analysis with a large number of modes, such as that in $4, is carried out. 
It is also interesting that no stable low-dimensional attractors exist beyond 8, and 
an irregular temporal behaviour is obtained. This is quite distinct from the 
intermittent bursts obtained a t  the heteroclinic bifurcation of the superharmonic 
travelling wave as shown by Armbruster et al. (1988) for generic O(2) systems 
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without subharmonics and by Aubry et al. (1988) or bursts in turbulent boundary 
layers. Also, as Aubry et al. (1988) explained in their use of large-scale empirical 
eigenfunctions, irregular temporal behaviour of our model and theirs can only be 
associated with large-scale structures since only a small number of modes with 
wavenumbers close to a, are used. If the observed fluctuation is associated with fine 
structures and large wavenumbers, it  cannot be described by these low-dimensional 
models. 

Finally, we remark that, while Armbruster et al. (1989) were able to study a rather 
generic unfolding of the two mode equations in (5.10) for systems with O ( 2 )  
symmetry and uncover travelling wave instability and other phenomena, the same 
general analysis is unlikely for the three mode equations (5.18) of subharmonic 
instabilities because of the large number of independent parameters. Some analysis 
is, however, possible if either A; or A; becomes stable as one traverses along the left 
or right neutral curves, respectively. This will appear in a separate manuscript. 

This work was supported by the National Science Foundation under Grant No. 
ENG-8451116 and by the Center of Applied Mathematics a t  the University of Notre 
Dame. We are also grateful to  M. Cheng for his assistance in the derivation of the 
amplitude equations. 

Appendix. The effect of mean flow interaction 
The centre-unstable manifold theory of $5 can be used to  show that mean flow 

interaction does not change our estimate for the onset of subharmonic instability to 
leading order. Including the m = 0 mode in (5.1), one obtains 

dAl 
dt 
-- - [.. .]+&P[&O]A;A,, = [.. .]+&P[O,O]A;, 

dt 

3 = [ . . . ] + f P [ l , O ] A , A , ,  
dt 

2- dA - [.. . ]  +&P[2,O]A,AO, 
dt 

d A s  
dt 
-- * - [.. .]+&P[$,O]A;A,, 

d A s  
dt 
2 = [.. .]+&P[:,O]Ap4,, 

= [ . . . ]+&P[3,O]A,A0, 
dt 

where [ . . . I  denotes the original terms in (5.1). Note also that A ,  is a real amplitude 
A ,  = A,*. Since A ,  is always stable, it must also be expanded in terms of the nearly 
neutral and unstable modes, A, ,  A; and A;. However, to  second order in these modes, 
the expansions o A, ,  A;  and A ,  remain the same as those in (5.17). The only addition 
to the final amplitude equation of (5.18) is 

5 

Substituting this expansion of the zero-wavenumber mode and those for the other 
stable modes in (5 .17 )  into the amplitude equations of A, ,  A; and A; in (5.1), one still 
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are now altered by the mean flow obtains (5.18) but some of the cubic coefficients 
interaction : 

These cubic coefficients will after some of the elements of the matrix J in (5.27) 
although the two zero elements remain unchanged. The two block diagonal matrices 
in (5.28) also have the same expressions but with the new T( coefficients. As a result, 
the leading-order estimate of Rt in (5.31), which involves only the quadratic terms, 
remains the same as before. 
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